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Abstract
Background: Training of a repetitive synchronised movement of two limb muscles leads to short-term
plastic changes in the primary motor cortex, which can be assessed by transcranial magnetic stimulation
(TMS) mapping. We used this paradigm to study the effect of memantine, a NDMA antagonist, on short-
term motor cortex plasticity in 20 healthy human subjects, and we were especially interested in possible
differential effects of different treatment regimens. In a randomised double-blinded cross over study design
we therefore administered placebo or memantine either as a single dosage or as an ascending dosage over
8 days. Before and after one hour of motor training, which consisted of a repetitive co-contraction of the
abductor pollicis brevis (APB) and the deltoid muscle, we assessed the motor output map of the APB
muscle by TMS under the different conditions.

Results: We found a significant medial shift of the APB motor output map after training in the placebo
condition, indicating training-induced short-term plastic changes in the motor cortex. A single dosage of
memantine had no significant effect on this training-induced plasticity, whereas memantine administered in
an ascending dosage over 8 days was able to block the cortical effect of the motor training. The memantine
serum levels after 8 days were markedly higher than the serum levels after a single dosage of memantine,
but there was no individual correlation between the shift of the motor output map and the memantine
serum level. Besides, repeated administration of a low memantine dosage also led to an effective blockade
of training-induced cortical plasticity in spite of serum levels comparable to those reached after single dose
administration, suggesting that the repeated administration was more important for the blocking effect
than the memantine serum levels.

Conclusion: We conclude that the NMDA-antagonist memantine is able to block training-induced motor
cortex plasticity when administered over 8 days, but not after administration of a single dose. This
differential effect might be mainly due to the prolonged action of memantine at the NMDA receptor. These
findings must be considered if clinical studies are designed, which aim at evaluating the potency of
memantine to prevent "maladaptive" plasticity, e.g. after limb amputation.
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Background
Determination of motor output maps by transcranial
magnetic stimulation (TMS mapping) proved to be a use-
ful tool allowing the study of the cortical representation of
various muscles [1-5], and showing a high map stability
and reproducibility [6-8]. Serial TMS mappings can be
used to assess short-term plastic changes of the motor cor-
tex induced by the repetitive performance of a motor task
consisting of a synchronised movement of two limb mus-
cles. This was demonstrated by a shift of the centre of grav-
ity (COG) of the motor output map derived from a small
hand muscle towards the representation of the co-con-
tracted shoulder [9] or leg muscle [10]. Hence this model
was used to study the effect of different central acting
drugs on short-term motor cortex plasticity: The GABAA
agonist lorazepam and the N-methyl-D-aspartate
(NMDA)-antagonist amantadine were found to block
such cortical plastic changes [11], whereas the indirect
dopaminergic and adrenergic agonist amphetamine and
the serotonin reuptake inhibitor fluoxetine enhanced
training induced cortical plasticity [12,13]. Similar effects
of GABAA agonists, NMDA antagonists and amphetamine
were reported in series of studies using different para-
digms to study training-induced motor cortex plasticity by
TMS [14-16], and coactivation-induced plasticity in the
primary somatosensory cortex [17-19]. These results sup-
port the view that short-term plastic changes in the motor
cortex are based on functional changes of synaptic activ-
ity, requiring removal of local (presumably GABAA medi-
ated) inhibition, as well as long-term potentiation (LTP)-
like changes which are mediated through NMDA receptor
activation [20-22].

Motor cortex plasticity, which occurs not only after motor
training, but also after peripheral or central lesions [23],
might not necessarily be adaptive or beneficial: Possible
maladaptive consequences such as phantom limb pain
after limb amputation are also discussed to be related to
such cortical plastic changes [24]. Hence it could be of
therapeutical interest to prevent cortical plasticity, e.g. by
using drugs such as memantine, which is a non-competi-
tive antagonist of glutamate and other excitatory amino
acids at the MK-801-binding site of the NMDA receptor
[25-27].

Here, we used the previously introduced muscle co-con-
traction paradigm (co-contraction of the deltoid and of
the abductor pollicis brevis (APB) muscle) combined with
TMS mapping of the APB muscle before and after training
in order to evaluate the effect of memantine on short-term
motor cortex plasticity in healthy subjects, and on motor
performance. Previous studies generally used single dose
administration of different drugs like NMDA antagonists
or GABA agonists in order to pharmacologically modulate
cortical plasticity [15,28,29]. Here, we were particularly

interested in possible differential effects of different treat-
ment regimens of memantine, and therefore administered
placebo or memantine either as a single dosage or as an
ascending dosage over 8 days to healthy humans in a ran-
domised double-blinded cross over study design.

Results
Training effect on mapping parameters and map 
reproducibility
Looking at the placebo sessions of all 15 subjects partici-
pating in the placebo-controlled experiments, we found a
significant medial shift of the amplitude-weighted centre
of gravity (COG) of the motor output map of the APB
muscle (y coordinate before training -5.12 ± 0.64 cm
mean ± SD, after training -5.02 ± 0.58 cm, paired t-test, p
= 0.022) after motor training. This COG shift was accom-
panied by a significant lowering of the motor threshold
(MT before training 37.4 ± 6.0%, after training 36.7 ±
5.5%, p = 0.019). Other mapping parameters like the x
coordinate of the COG, the area of the map, the number
of hotspots of the map, the mean MEP amplitude and the
sum of amplitudes (SOA) of the map did not change sig-
nificantly during training.

Comparing the TMS mappings before motor training in
the individual subjects between memantine and placebo
sessions, there was no significant difference in one of the
mapping parameters, indicating a high reproducibility of
the mapping procedure.

Memantine effect (single dosage experiment; Table 1)
In the eight subjects who participated in this experiment,
we found a significant shortening of the latency differ-
ences between the onset of the APB and deltoid muscle
contraction during the course of the motor training as
revealed by ANOVA for repeated measurements (signifi-
cant influence of the factor "training duration",
F(3.14,43.95) = 17.729, p < 0.001; Fig. 1A). Memantine
did not affect this training effect, as shown by the non-sig-
nificant influence of the factor "drug" (F(1,14) = 1.876, p
= 0.192), and by the non-significant interaction between
both factors (F(3.14,43.95) = 1.646, p = 0.191).

Memantine serum levels, which were assessed in seven
subjects, reached a plateau about 2 hours after drug intake
and remained almost stable during the following 5 hours
(Fig. 2). Among all subjects, the highest memantine
serum level that was reached was 56.16 ng/ml of meman-
tine free base (3 hours after drug intake). Mean meman-
tine serum level 5 hours after drug intake (i.e.,
immediately after motor training, before starting the sec-
ond mapping procedure) was 36.1 ± 6.1 ng/ml.

ANOVA revealed a significant lowering of MT after train-
ing (F(1,14) = 9.000, p = 0.010 for the factor "training"),
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but without significant influence of the factor "drug"
(F(1,14) = 0.072, p = 0.793), and without significant
interaction between both factors (F(1,14) = 0.111, p =
0.744). For other mapping parameters, no significant
influence of the factors "training" or "drug", and no signif-
icant interaction between both factors was detected.

Memantine effect (ascending dosage experiment; Table 1)
Similar to the results of the single dosage session, we
found a significant shortening of the latency differences

between the onset of the APB and deltoid muscle contrac-
tion during training as revealed by ANOVA for repeated
measurements (significant influence of the factor "train-
ing duration", F(1.79,21.46) = 13.528, p < 0.001; Fig. 1B)
in the seven subjects who participated in this experiment.
Again, memantine did not affect this training effect, as
shown by the non-significant influence of the factor
"drug" (F(1,12) = 0.422, p = 0.528), and by the non-sig-
nificant interaction between both factors (F(1.79,21.46) =
0.476, p = 0.607).

Table 1: TMS mapping results. Mean ± standard deviation for the different TMS parameters assessed before and after one hour of 
synchronized movements of the right thumb and shoulder under different conditions

Single dosage (n= 8)

Placebo Memantine

Before training After training Before training After training

x coordinate COG (cm) 1.58 ± 0.61 1.59 ± 0.67 1.43 ± 0.72 1.58 ± 0.62
y coordinate COG (cm) -4.82 ± 0.44 -4.74 ± 0.41 -4.98 ± 0.56 -4.97 ± 0.65
Motor threshold (%) 34.6 ± 3.0 34.1 ± 2.7 35.0 ± 1.7 34.4 ± 1.9
Area (cm2) 14.6 ± 4.4 13.8 ± 2.8 15.5 ± 5.2 16.1 ± 2.8
Sum of amplitudes (µV) 1584.6 ± 999.6 1412.0 ± 797.8 2022.4 ± 1193.6 1733.0 ± 756.6
Number of "hotspots" 3.4 ± 2.4 2.7 ± 2.6 4.2 ± 2.8 3.4 ± 2.3
Mean amplitude (µV) 116.1 ± 94.9 100.4 ± 49.9 161.9 ± 180.6 111.4 ± 53.9

Ascending dosage over 8 days (n = 7)

Placebo Memantine

Before training After training Before training After training

x coordinate COG (cm) 1.21 ± 0.60 1.38 ± 0.59 1.49 ± 0.64 1.53 ± 0.66
y coordinate COG (cm) -5.46 ± 0.69 -5.34 ± 0.61 -5.36 ± 0.50 -5.44 ± 0.59
Motor threshold (%) 40.6 ± 7.1 39.7 ± 6.5 41.3 ± 7.3 40.9 ± 7.0
Area (cm2) 16.6 ± 3.8 15.7 ± 3.6 15.9 ± 3.6 16.3 ± 3.7
Sum of amplitudes (µV) 1901.6 ± 1515.8 1535.1 ± 939.3 1744.4 ± 1086.0 1726.7 ± 808.6
Number of "hotspots" 4.4 ± 3.5 3.6 ± 2.6 3.9 ± 3.1 3.6 ± 2.8
Mean amplitude (µV) 120.5 ± 95.4 104.3 ± 65.0 107.2 ± 52.7 107.6 ± 45.2

Low dosage (10 mg/d) over 8 days (n = 5)

Memantine

Before training After training

x coordinate COG (cm) 0.80 ± 0.46 0.62 ± 0.71
y coordinate COG (cm) -5.12 ± 0.46 -5.20 ± 0.53
Motor threshold (%) 38.4 ± 8.3 38.8 ± 12.1
Area (cm2) 12.0 ± 4.1 14.6 ± 4.0
Sum of amplitudes (µV) 1852.2 ± 2169.4 1984.6 ± 1686.1
Number of "hotspots" 3.8 ± 3.8 4.0 ± 4.3
Mean amplitude (µV) 131.2 ± 106.1 122.0 ± 92.5
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Motor performanceFigure 1
Motor performance. Comparison of motor performance with placebo (filled circles) and with memantine (open circles). 
Shown are the results of the single dosage (A) and ascending dosage (B) experiment. The mean latency difference between the 
onset of muscle contractions (abductor pollicis brevis and deltoid muscle) is shown at different motor training durations.
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Mean serum level in the memantine session was 83.1 ±
17.4 ng/ml of memantine free base, with a maximum of
105.4 ng/ml in one subject.

Regarding the y coordinate of the COG, there was a
medial shift of the y coordinate under placebo (+0.12 ±
0.18 cm), whereas under memantine a slight lateral shift
was observed (-0.08 ± 0.17 cm). ANOVA revealed a signif-
icant interaction of the factors "training" and "drug"
(F(1,12) = 4.789, p = 0.049), whereas the factors "train-
ing" (F(1,12) = 0.150, p = 0.705) and "drug" (F(1,12) =
0.000, p = 1.000) alone did not influence the y coordi-
nate, indicating a significant difference between the shifts
of the y coordinate under the different experimental
conditions (Fig. 3). For other mapping parameters, no sig-
nificant influence of the factors "training" or "drug", and
no significant interaction between both factors was found.

In order to assess the effect of memantine alone on map-
ping parameters, without motor training, we additionally
compared baseline TMS maps in the placebo and in the
memantine condition using Student's paired t-test. For
none of the mapping parameters, including the y-coordi-
nate of the COG (-5.460 ± 0.692 with placebo, -5.359 ±
0.503 with memantine, p = 0.301), a significant difference

could be observed between the baseline maps (Table 1),
indicating that memantine alone had no effect on the
mapping parameters.

Influence of memantine serum levels
In order to determine whether the differential effect of
memantine in the two experiments might be more related
to the different serum levels or to the repeated dosage, we
administered a low dosage of memantine (10 mg/d) over
8 days in 5 additional healthy subjects. Mean memantine
serum level in this control experiment was 32.2 ± 5.4 ng/
ml of memantine free base, with a maximum of 39.9 ng/
ml in one subject, and therefore similar to the mean
memantine level in the single dosage experiment. The
training effect on motor performance was comparable to
the other two experiments, with a significant shortening
of the latency differences between the onset of the APB
and deltoid muscle contraction during training as
revealed by ANOVA for repeated measurements (signifi-
cant influence of the factor "training duration", F(5,20) =
8.907, p < 0.001). However, for none of the mapping
parameters, a significant pre-post difference could be
observed after motor training (Table 1). Similarly to the
ascending dosage experiment, the y co-ordinate of the
COG showed a tendency rather to a lateral than to a

Memantine serum levels (single dosage)Figure 2
Memantine serum levels (single dosage). Time course of the memantine serum level after administration of a single dos-
age. The serum levels of individual subjects, as well as the mean serum level at the different measurement points are shown.
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medial shift, indicating an effective prevention of train-
ing-induced cortical plastic changes.

Looking separately at the different experiments, no signif-
icant individual correlation was found between meman-
tine serum levels and the pre-post differences of one of the
mapping parameters. With the data of the memantine
conditions of all experiments pooled together, also no sig-
nificant correlation with the memantine serum level was

detected, neither for the pre-post difference of the y coor-
dinate (Fig. 4), nor for one of the other mapping
parameters.

Relationship between motor performance and TMS 
mapping
For none of the pre-post differences of the mapping
parameters, a significant correlation to the improvement
of the motor performance could be observed.

TMS mapping (individual subject)Figure 3
TMS mapping (individual subject). Example of the TMS mapping results in one individual subject who participated in the 
ascending dosage experiment. Different colours represent the MEP amplitudes after stimulation at the different scalp positions. 
Note the medial shift of the motor output map of the abductor pollicis brevis muscle after training in the placebo condition, 
which is no longer present in the memantine condition.
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Discussion
The main finding of this study is that the repetitive per-
formance of a motor task consisting of a synchronised
contraction of the APB and deltoid muscle in the placebo
condition leads to a directional shift of the COG of the
motor output map of the APB muscle towards the more
medial representation of the co-contracted muscle, and
that this medial shift is blocked by memantine
administered over a period of 8 days, but not by a single
dose of memantine.

Our results confirm the results of previous studies, which
demonstrated a similar directional shift by means of TMS
mapping using the same motor training paradigm [11-
13]. In addition, a training induced reduction of motor
threshold was observed, which did not differ between pla-
cebo and memantine sessions. This lack of influence of
memantine on motor threshold is in line with previous
findings, suggesting that motor threshold mainly reflects
the excitability of the neuronal membrane, and therefore
can be influenced by drugs that block voltage-gated

sodium channels like lamotrigine or phenytoin [30,31],
whereas drugs that influence synaptic transmission like
memantine have little influence [32].

Changes of motor threshold and area may be simply due
to changes of local motor excitability and not necessarily
linked to "true" plasticity in the underlying networks [33].
In contrast, the shift of the COG of the motor output map
must be considered as a marker for organisational changes
in the representation of movements within the primary
motor cortex, and therefore as a correlate of "true" motor
cortex plasticity [33-35]. In previous studies, it has been
extensively demonstrated that drugs affecting cortical
excitability (including NMDA-antagonists) are not able to
induce "true" cortical plasticity on their own, suggesting
that cortical excitability changes might constitute a neces-
sary, but not sufficient factor in the induction of cortical
plasticity [12,15]. Thus it is not conceivable that meman-
tine, which is also known to affect motor cortex excitabil-
ity [32], induces a (lateral) directional shift of the COG on
its own, and therefore only masks the training induced

Relationship between memantine serum levels and COG shiftFigure 4
Relationship between memantine serum levels and COG shift. Memantine serum levels are plotted against the shift of 
the y coordinate of the COG after training. Positive values indicate a shift in a medial, negative values a shift in a lateral direc-
tion. Linear correlation analysis reveals no significant correlation. Subjects who participated in the single dosage experiment are 
red-labelled, subjects who participated in the ascending dosage experiment are blue-labelled, and subjects who participated in 
the control experiment (repeated low dosage) are green-labelled. Memantine serum levels of the single dosage experiment 
refer to the values obtained 5 hours after drug administration.
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medial shift of the COG. Such an effect of memantine
alone on the COG could additionally be excluded by
comparing the baseline maps obtained prior to the motor
learning with placebo and memantine in the ascending
dosage experiment, which did not significantly differ from
each other. Our results therefore strongly suggest that
memantine is able to block training-induced motor cortex
plasticity.

Similar use-dependent alterations of movement represen-
tations were observed in the primary motor cortex of adult
squirrel monkeys by Nudo et al. [36]. They discovered
that after training there was an area expansion of dual-
response representations, i.e., cortical sectors over which
stimulation produced movements over two or more
joints. This may explain the shift of the APB motor output
map towards the representation of the co-contracted del-
toid muscle in our study. This representational shift can
be referred to a principle presented by Hebb, who sug-
gested that individual neurons could participate in differ-
ent cell assemblies and be involved in multiple functions
and representations [37]. The synchronisation or pairing
of impulses would then lead to an increase of the excita-
bility of specific neuronal populations, and to a strength-
ening of the efficacy of their synaptic pathways [10]. This
strengthening of synaptic efficacy would involve LTP-like
mechanisms, and require the activation of NMDA recep-
tors [21,22]. The fact that the NMDA antagonist meman-
tine was able to prevent cortical plasticity supports this
view and confirms previous findings [11,15].

A significant effect of memantine on motor cortex plastic-
ity could be observed in the ascending dosage experiment,
whereas the single dosage experiment failed to show a sig-
nificant difference between memantine and placebo.
Since memantine serum levels were markedly higher in
this group, we cannot completely rule out that the differ-
ential effects of the two administration regimens are
linked to these differences in the serum levels. However,
in an additional control experiment, an effective blockade
of training-induced cortical plasticity was also reached by
a repeated administration of a low memantine dosage,
with memantine serum levels comparable to those meas-
ured after administration of a higher single dosage.
Besides, correlation analysis failed to detect a linear corre-
lation between memantine serum levels and COG shifts
in individual subjects. These additional findings suggest
that the repeated administration of memantine over 8
days was more important for the blocking effect than the
memantine serum levels. In previous studies, it has been
demonstrated that after subchronic NMDA receptor
blockade over seven days, regulatory mechanisms occur at
a cellular level, including a down-regulation of cortical
NMDA receptors due to a reduction of the glutamate
binding site [38,39]. Such mechanisms might also have

occurred in our study after 8 days of memantine adminis-
tration in both the ascending dosage experiment and the
control experiment using a repeated low dosage, and
therefore have contributed to the effective blockade of
training-induced cortical plasticity regardless of meman-
tine serum levels.

During one hour of training, a significant improvement
was observed in motor performance, which was not
affected by memantine administration, neither in the sin-
gle dosage nor in the ascending dosage experiment. There
was also no significant correlation between the perform-
ance improvement and the changes of one of the mapping
parameters. This lack of correlation also corresponds to
the results reported in previous studies [10,12], which did
not reveal a correlation between the improvement of
motor performance and the shift of the motor output
map. It supports the view that the repetition of a synchro-
nised movement is more important for the induction of
cortical plasticity than the improvement of the motor
performance.

Conclusion
Previous clinical studies, which used the NMDA antago-
nist memantine to treat patients e.g. with chronic phan-
tom limb pain, failed to prove any therapeutic effect of
memantine in these patients [40-42]. This might be due to
the fact that pain-related reorganisation in these chronic
patients was already fixed and based on structural
changes, hence no longer dependent on NMDA receptor
activation. However, from a theoretical point of view,
preventing cortical plasticity by blocking NMDA receptors
might be a promising clinical approach for the prevention
of phantom limb pain if the NMDA antagonist is admin-
istered before amputation. The present study suggests that
memantine is a drug that could be effective for this pur-
pose, and should be evaluated in further clinical studies.
It also emphasizes the importance of an adequate dosage
regime, since it would be probably ineffective if adminis-
tered as a single dosage. Repeated administration seems to
be more important than the reached serum levels, possi-
bly allowing the use of lower dosages which are better
tolerated.

Methods
Subjects and study design
We investigated 20 healthy right-handed subjects (12 men
and eight women, aged 19 – 41 years, mean age 27.7 ± 6.8
years), who were all unrelated to the medical field. They
all gave their written informed consent, and the protocol
was approved by the local ethical committee. All subjects
participated either in the single dosage experiment, or in
the ascending dosage experiment, or in the control exper-
iment with a repeated low dosage.
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Single dosage experiment: Eight subjects (four men and
four women aged between 20 and 34 years) had to partic-
ipate in two experimental sessions using a randomised
double-blinded cross-over study design, with both the
researcher and the participating subject being blinded to
the experimental condition. They were randomly split
into two groups. The first group, made up of four subjects,
started with a session including the administration of a
single dose of memantine (20 mg to 35 mg, adapted to
the individual body weight), the other group with placebo
administration. This process was reversed after an interval
of at least 14 days. Each session started with a TMS map-
ping of the right abductor pollicis brevis (APB) muscle as
described below. The drug was administered immediately
after finishing this mapping procedure, and blood sam-
ples were drawn every hour afterwards in order to monitor
memantine serum levels. Four hours after drug intake,
subjects had to perform a repetitive motor task as
described below. Immediately after this motor training, a
second TMS mapping of the right APB muscle was per-
formed in order to assess training-induced changes of the
APB motor output map.

Ascending dosage experiment: Again a randomised dou-
ble-blinded cross-over study design was used to study
seven other subjects (four men and three women) in this
experiment, with the researcher and the participating sub-
ject being blinded to the experimental condition. Subjects
were randomly split into 2 groups, one group receiving
placebo in a first and memantine in a second session, and
one group receiving memantine in a first and placebo in a
second session, each over a period of 8 days. There was a
wash out phase of at least 14 days between both sessions
in each subject. Memantine was initially given with a dos-
age of 10 mg daily, and augmented in steps of 10 mg every
3 days up to 30 mg daily. At day 8, memantine serum lev-
els were determined, and a TMS mapping of the APB mus-
cle was performed twice, immediately before and after
one hour of repetitive motor training. Mapping proce-
dures and motor training were identical as in experiment
1.

Control experiment with a repeated low dosage: Five sub-
jects (four men and one woman) participated in this con-
trol experiment, receiving a daily dosage of 10 mg
memantine over a period of 8 days. In this control exper-
iment, there was no placebo condition, and the researcher
as well as the subject was aware of the administered drug.
At day 8, memantine serum levels were determined, and a
TMS mapping of the APB muscle was performed twice,
immediately before and after one hour of repetitive motor
training. Mapping procedures and motor training were
identical as in the other experiments. This experiment was
designed to achieve memantine serum levels comparable
to the single dosage experiment, in order to determine

whether the memantine serum levels or the repeated
administration might be more important for the drug's
effect on training- induced cortical plasticity.

Memantine serum level
Immediately after each blood withdrawal, the sample was
centrifuged, and the serum was frozen at -70°C. After fin-
ishing the study, all frozen samples were shipped together
to the Department of Pharmacological Research, Merz
Pharmaceuticals, Frankfurt am Main, Germany, where
memantine serum levels were assayed with a gas-chroma-
tographic system coupled to a mass selective detector (for
details, see [43-45]). Results were expressed as ng/ml con-
centrations of memantine free base, and not as concentra-
tions of memantine hydrochloride.

Transcranial magnetic stimulation (TMS) mapping
TMS was performed with a Magstim 200 HP device (The
Magstim Company) and a figure-of-eight shaped coil
(outside diameter 8.7 cm, peak magnetic field strength
2.2T, peak electric field strength 660 V/m), which pre-
dominantly stimulates neural structures under its centre.
During the whole mapping procedure the coil was held
tangentially to the head in an anterior-posterior direction,
with the grip pointing backwards. Motor evoked poten-
tials (MEP) were recorded with surface electrodes from the
right abductor pollicis brevis muscle (APB) and stored on
an EMG device (Neuropack 8, Nihon Kohden). The band
pass was 20 Hz to 2 kHz, the gain 0.1 to 1 mV/D. The mag-
netic stimuli were delivered while the subjects were seated
comfortably in a chair. During the whole examination,
muscle relaxation was monitored with surface electrodes
by EMG (gain 0.1 mV/D). Motor threshold (MT) was
determined at rest to the nearest 1% of the stimulator out-
put, and was defined as the minimum intensity which
produced five motor evoked potentials >50 µV out of ten
trials [46]. Threshold was determined over the scalp posi-
tion were TMS previously elicited the highest amplitude.
Starting at this scalp position and using a stimulation
intensity of 110 % of the motor threshold, the motor cor-
tex was examined systematically in rostral, dorsal, medial
and lateral directions in steps of 1 cm until no further MEP
could be elicited. The positions were identified with the
help of a tight fitting cap with a coordinate system drawn
on it (1 × 1 cm width). Cz was identified as the intersec-
tion of the interaural line and the connection between
nasion and inion, which made it possible to localize the
coordinates relative to Cz. The x-coordinate was used to
indicate the distance in anterior-posterior direction rela-
tive to Cz, and the y-coordinate to indicate the distance in
medio-lateral direction. Coordinates of Cz were defined
as 0/0. Eight stimuli were applied to each position of the
grid, and the averaged peak-to-peak MEP amplitude was
considered for further statistical analysis. Averaged ampli-
tudes smaller than 10 µV were regarded as zero.
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Afterwards, we calculated the sum of all MEP amplitudes
of the motor output map (SOA), and its amplitude-
weighted centre of gravity (COG). The x and y-coordinates
of the centre of gravity (COG) are derived from the distri-
bution of MEP amplitudes within the motor output area.
They were calculated according to the formula [Σ(x*z)/Σz]
or [Σ(y*z)/Σz], where x or y is the position along the x or
y axis, and z is the amplitude at this position [10].

As additional mapping parameters were assessed:

- the number of active stimulation sites, i.e. the number of
scalp sites from which MEPs could be elicited was used as
a marker for the area size of the motor output map, each
position equaling 1 cm2,

- the number of "hotspots" of the motor output map, i.e.,
the number of scalp sites on the coordinate system where
TMS elicited MEPs with a mean MEP amplitude of >150
µV, and

- the mean MEP amplitude across all stimulation sites,
which was calculated by dividing the SOA by the number
of active stimulation sites.

Motor training
In each experimental session, the subjects had to perform
a repetitive motor task. This motor task consisted of a syn-
chronised contraction of the deltoid and abductor pollicis
brevis (APB) muscle. The participants were instructed to
make brisk and short movements of both muscles as syn-
chronously as possible. Approximately three co-contrac-
tions per minute had to be performed over one hour. After
each single co-contraction, the latency difference between
the onsets of muscle contractions was determined using
EMG-monitoring with surface electrodes on both mus-
cles. These latency differences of voluntary EMG-activity
allowed us to evaluate motor performance. The subjects
were informed about the results of their performance and
encouraged to improve it [11].

Statistical analysis
Student's paired t-test served to assess intraindividual
changes in mapping parameters before and after motor
training without memantine intake, to evaluate intrasub-
ject reproducibility of the neurophysiologic data by com-
paring the maps of individual subjects obtained prior to
motor learning in different sessions, and to examine the
effect of memantine alone by comparing the baseline
maps between the memantine and the placebo condition
in the ascending dosage experiment. Student's paired t-
test was also used in the control experiment to assess
changes in mapping parameters before and after motor
training after repeated administration of a low dosage of
memantine. To evaluate differences of the TMS mapping

parameters between placebo and memantine sessions we
used an ANOVA for repeated measurements (main factors
"training", i.e., pre vs. post, and "drug" i.e., memantine vs.
placebo). The Greenhouse-Geisser procedure was used
with epsilon-corrected degrees of freedom, where data
showed significant deviations from sphericity. To evaluate
the effect of repetitive co-contraction on motor perform-
ance, the mean latency differences between the onsets of
both muscles for the intervals 0–10 min, 10–20 min, 20–
30 min, 30–40 min, 40–50 min and 50–60 min were cal-
culated in each subject and for each session. ANOVA for
repeated measurements (main factors: "training duration"
and "drug") was performed. Pearson's correlation coeffi-
cient r was calculated in order to detect a possible relation-
ship between the pre-post differences of the mapping
parameters, memantine serum levels and the improve-
ment of motor task performance, defined as the difference
between the mean onset latency difference in the 0–10
min and the 50–60 min interval. For this correlation anal-
ysis, only the data obtained after memantine intake were
used. For all tests, significance was assumed at the 5 %
level.
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